Light Backscattering

A complementary tool to monitor the Phase Inversion of Emulsions

Aldo Pizzino¹,², Marianne Catte¹, Elisabeth Van Hecke¹, Jean-Louis Salager², Jean-Marie Aubry¹

¹ LCOM–UMR CNRS 8009–USTL, Cité Scientifique, 59655 Villeneuve d’Ascq, France
² Laboratorio FIRP, Ingeniería Química, Universidad de Los Andes, Mérida, Venezuela
Phase Inversion of Emulsions

Thermodynamically Unstable

Surfactant

Droplets size: 0.1 to 100 µm

Transitional

• % Salt
• Temperature
• ACN
• % Alcohol

Catastrophic

Water Oil Ratio

How can we track the Phase Inversion of Emulsions?

In situ real time Conductimetry

Bruggeman’s law: \(\kappa_e = \kappa_w \left(1 - \phi\right)^{3/2} \)

\(\kappa_w (T, \text{Salt Concentration}) \)

Salt is required...

No information when the Oil is the continuous phase

Compatible with all emulsification processes

Shinoda et al., Journal of Physical Chemistry 1964, 68, 3485-3490
How can we track the Phase Inversion of Emulsions?

In situ real time Viscosimetry

\[\eta_e (\eta_0, \eta_w, \phi, D, \text{Polydispersity}) \]

Signal whatever the continuous phase

Allouche et al., Langmuir 2004, 20, 2134-2140

Non versatile emulsification conditions (geometrical factors)

Useful practical parameters
How can we track the Phase Inversion of Emulsions?

In situ real time Optical Technique (microscopy)

The Inversion Point can not be determined

Blind if Droplets Size $< \pm 10 \, \mu m$

Real time Droplet size determination

Alban et al., Chemical Engineering Research and Design 2004, 82(A8), 1054-1060
Sajjadi et al., Colloids and Surfaces A 2004, 240, 149-155
How can we track the Emulsions Phase Inversion?

On line Optical Light Backscattering

%BS \(I_0, \lambda, n_o, n_w, \phi, \theta, D \)

5% Brij 30 / Decane / 10^{-2}M NaCl
aqueous \(f_w = 0,6 \)

Adaptable to any formulations and emulsification processes

Gives a Signal whatever the continuous phase

Pizzino et al., Langmuir 2007, 27, 5286-5288

TURBISCAN On Line, FORMULACTION, Toulouse - F.
Determination of the PIT from the Backscattering Signal

Where should we place the Phase Inversion Point?

5% Brij 30 / Decane / 10^{-2} M NaCl fw = 0.6
Trying to understand the Light Backscattering signal…

\[\%BS \ (I_0, \lambda, n_o, n_w, \phi, \theta, D) \]

Mastersizer Granulometer

5% Brij 30 / Decane / \(10^{-2}\) M NaCl \(fw = 0.6\)
Validation of the Light Backscattering Technique

5% Brij 30 / Decane / 10^{-2} M NaCl

Conductimetry

Backscattering

 Forgiarini et al., Langmuir 2001, 17, 2076-2083
CONCLUSION

Light Backscattering is:

A complementary technique to track the Phase Inversion

Easy to use, non-invasive and adaptable to any emulsification process

Sheding light on the transitory phenomena occuring in the W/O region blind to other techniques

Perspectives

Scale down the system?
Morphology of the transitory state (L.C.?)
Thanks For Your Attention