1 Introduction

In recent years, new classes of amphiphilic molecules have emerged and have attracted the attention of various industrial and academic research groups. One of these classes is the “gemini” or “dimeric” surfactants, which have two hydrophilic head groups and two hydrophobic groups per molecule, separated by a covalently bonded spacer (1). These surfactants have also been referred as “bipolar” or “bisquaternary ammonium” in case of cationic surfactants. The first reports on dimeric surfactants concerned bisquaternary ammonium halide surfactants. Their biological activity in aqueous solution was studied and micellar solutions of these surfactants were used to catalyze chemical reactions (2). Most studies, however reported on the surface tension of the aqueous solutions of dimeric surfactants for cmc determination and assessment of their capacity in the reducing the surface tension of water (3-5). These surfactants appear to be better in certain properties than corresponding, and more conventional monomeric surfactants which are made up of one hydrophilic and one hydrophobic group which may include one or more alkyl chains. They tend to much lower cmc’s, can produce lower tension than monomeric surfactants at the same molar mass concentration and have better wetting properties (6).

Cationic surfactants are used for number of stabiliza-
tion problems and have found many technical applications. Because of the predominant negatively charged nature of natural colloids and surfaces, cationic surfactants form strong adsorption layers and hydrophobize the surfaces of these materials. Applications of cationic surfactants include softeners, cosmetic products, electro-dicoatings, and the stabilization of adhesive polymer latexes as well as in mining and paper manufacturing.

As industrial technology makes further progress, demands for high-performance surface active compounds are increasing. In response to these demands,
novel cationic gemini surfactants have been successfully
designed and developed. These surfactants are com-
posed of two cationic head groups and two hydrophobic
groups separated by a spacer group which is shown in
Fig. 1. These surfactants show much better surface
active properties than their conventional analogs.

The present paper attempts to explore the potential of
a different class of cationic surfactants i.e. cationic
gemini surfactants. Some examples of cationic gemini
surfactants are depicted in Fig. 2.

2 Synthesis

2.1 Bis-Quaternary Ammonium Salts

The alkanediyl-α, ω bis (alkyl dimethyl ammonium
bromide) or bisquaternary ammonium bromides have
been by far the most investigated dimeric surfactants.
These surfactants designated by the abbreviation m-s-
m, 2Br-, s and m being the carbon numbers of the alkyl
chain of the amphiphilic moieties. These surfactants are
formally the dimers of the quaternary dimethyl ammo-
nium bromides surfactants with two unequal alkyl chain
of carbon numbers m and s/2. Synthesis of bis-quater-
nary ammonium salts are given below:

A. Kim et al. (7) synthesized a new type of surfactants,
by the reaction of long chain alkyldimethyl amine with
epichlorohydrin in the presence of amine hydrochloride
or various dichloro compounds to afford the bis-ammo-
nium salts, in which two quaternary alkyl ammonium
chlorides are formally connected with a spacer. Al-
though epichlorohydrin has been used for the reac-
tion with alkyl amine, many kinds of products have
been reported depending on the reaction conditions (8-
13). Furthermore two patents (14, 15) claimed the prod-
cuct bis-ammonium salt from the reaction of alkylamine
with epichlorohydrin in hydrochloric acid/isopropanol/
water system, but the reaction path was left ambiguous
and may be different from that in this work.

In the present case, the reaction proceeds convenient-
ly and almost quantitatively under mild conditions.

Neighbouring group participation by the hydroxyl
group contributing to the ease of this reaction is dis-
cussed. The reaction route is studied by ^1H NMR.

Bis-dialkylmethyl ammonium salts from epichloro-
hydrin and bis-alkyldimethyl ammonium salts from
1, 3-dichloropropane were prepared as shown in
Scheme 1 and Scheme 2 (7).

B. Ricci et al. (16) reported micellar-improved synthe-
sis of bis-quaternary ammonium salts by epichlorohy-
drin route. They prepared bis quaternary ammonium
salts from long chain alkylidimethyl amines and
epichlorohydrin. An improved preparation of bis qua-
ternary ammonium salts from N, N-dimethyl octyl-
amine; N, N-dimethyl dodecylamine or N, N-dimethyl
oleylamine, their amine hydrochlorides and epichloro-
hydrin can be achieved by carrying out the reaction in
aqueous micellar medium. The amine hydrochlorides
are used as functional surfactants to produce self-micel-

\[
\begin{align*}
\text{Br(CH}_2\text{)}_2\text{N}^+\text{(CH}_2\text{)}_y\text{Y(CH}_2\text{)}_2\text{N}^+(\text{CH}_2)2\text{Br}^-
\end{align*}
\]

Fig. 1 Schematic Representation of Cationic Gemini
Surfactant.

Fig. 2 Structures of Cationic Gemini Surfactants.
Cationic Gemini Surfactants: A Review

Lization and solubilization of reactants. The formation of micelles is necessary condition for successful quaternization. Aqueous micellar medium lead to the conclusion that this micellar improved synthesis enables easier and cheaper access to bis-quaternary salts as intermediates and by using water as a solvent under mild conditions. These surfactants have unique aggregation abilities and better surface active properties than single-chain surfactants of equivalent chain length (17, 18).

Now a days the synthesis of bis quaternary ammonium salts is based on three different routes.
1. Reaction of long chain tertiary amines with dihalogenated substrates such as organic dibromides or dichlorides.
2. Reaction of N, N, N’N’-tetra methyl polyethylene diamines with alkyl halides.
3. Reaction of long chain tertiary amines with a haloalkylene oxides substrate, commonly epichlorohydrin.

C. A novel gemini surfactant with two lipophilic groups and two hydrophilic groups was prepared by using triethylamine, epichlorohydrin and bis (2-hydroxy-5-nonylphenyl) methane which was prepared from p-nonylphenol and formaldehyde. The structure was characterized by IR, 1H NMR, and elemental analysis. The good surface activity of surfactants was shown obviously by measurement of surface tension and critical micelle concentration in aqueous solution (19).

D. Russel et al prepared the double chain surfactants with two quaternary ammonium head groups: 2-(7 trimethyl ammonio heptyl)-2-decy1-4-(8-trimethyl ammonio octyl)-5-octyl-1,3 dioxalane dibromide [1] and 2-(3-trimethyl ammonio propyl)-2-tetradecyl-4-(8-trimethyl ammonio octyl)-5-octyl-1,3 dioxalane dibromide [2]. Surfactants [1] and [2] form micelles and undergo acid catalyzed hydrolysis to give the single-chain surfactants (20).

2.2 Cationic Gemini With Amide Head Groups

A novel gemini surfactant bis [N, N’-(dodecanoylamino) ethyl] triethylene diamine bromide (BDEDE) was synthesized from ethyl bromide and bis (2-dodecanoyl aminoethyl) ethylene diamine (BDEE). The latter was prepared from lauric acid and N, N’-bis (2-amino ethyl) ethylene diamine. The structure of gemini

\[
\text{scheme 1}
\]

\[
\text{scheme 2}
\]
surfactants was characterized by IR, 1H NMR, 13C NMR, and elemental analysis. Its cmc 1.05 mmoldm$^{-3}$ (mM) and γ_{cmc} 31.0 mNm$^{-1}$ were determined. The cmc of cationic gemini surfactants decreased by approximately two orders of magnitude than cmc of dodecyl trimethyl ammonium bromide (21).

2.3 Pyridinium Cationic Gemini Surfactants

Quagliolto et al. prepared a new series of pyridinium cationic gemini surfactants by quaternization of 2, 2′(α, ω alkanediyl) bispyridines with alkylating agents, whose reactivity is briefly discussed. They used the long chain alkyl trimates (trifluoro methane sulfonates) for both overcoming the steric hindrance in pyridines and obtaining higher synthetic yields. The new 2, 2′(α, ω alkanediyl) bis (1-alkyl pyridinium) series accounted for good surface active properties. These compounds have Krafft point below 0°C. The characterization of the behavior of this series was performed by conductivity measurements (22).

2.4 Cationic Gemini Surfactants Having Butylene Spacers

In the early 1970s Bunton and coworkers published a series of papers on micellar catalysis of nucleophilic substitution and decarboxylation reactions using dicationic detergents-compounds containing two quaternary ammonium surfactants monomer connected at the head group level by an alkyl or 2-butynyl spacer (2, 23, 24). Nearly three decades later, research into such surfactants, now commonly referred as gemini surfactants have their exceptional activity and widening utility have become apparent (1, 25, 26). Menger et al. (27) prepared geminis based on two issues:

1. First they determined the viability among gemini surfactant of heterocyclic head groups such as pyrrolidine and piperidine which is shown in Fig. 4.

2. Second was the issue of spacers flexibility or rigidity because spacer occupies a major role in the colloidal properties of geminis. However, most studies have involved fully saturated alkyl groups as flexible spacers (28, 29) or aryl group as rigid spacer (1, 30, 31). Thus, the 2-butynyl group provides a spacer of “intermediate” bending stiffness. Using these geminis, they show how the distinction between flexible and rigid spacers is not necessarily clear cut in regard to micellization, especially at chain lengths where dicationic geminis deviate from “classical” cmc behavior.

To pursue this study they synthesized the cationic gemini surfactants having a 2-butynyl spacer (Fig. 3) and chain length varying from 8 to 18 carbons. Geminis with more flexible butyl spacers were also synthesized from comparison purposes.

Tatsumi et al. (32) prepared a new series of new cationic gemini bis (alkylammonium dichlorides having a butylenes or butynylene spacer and an oxycarbonyl group in lipophilic part, and almost quaternized by reaction of corresponding mono (ester-amine) with highly reactive allylic compounds. These surfactants showed good biodegradability too.

2.5 Cationic Gemini Surfactants Based On Amino Acid

In past decade new cationic surfactants bis quaternary ammonium salts with halides or “bis quats”, have been synthesized and studied extensively (6, 33, 34). Due to their extraordinary surface activity, they have excellent properties of dispersion stabilization and soil cleanup. However, because these molecules have poor chemical and biological degradability, due to their chemical stability, posing a risk of toxicity to aquatic organism, they could become ecologically unacceptable. New classes of gemini cationic surfactants have been synthesized from amino acid sources (arginine) (35). They are N^a, N^w-bis (N^a-lauroylarginine)-α, ω-alkylidenediamide or bis(Args), as shown in Structure 1. These surfactants consist of two symmetrical long

![Structure 1](image1)

Fig. 3 Cationic Gemini Surfactants Having a 2-butynyl Spacer.

![Butylene Gemini](image2)

Fig. 4 Cationic Gemini with Acetylenic Spacers.
chain Nω-Lauroyl-L-arginine residues linked by amide covalent bonds to an \(\alpha,\omega\)-alkyldenediamine spacer chain of various length (n).

These geminis are much less toxic or hazardous. Their decomposition products after long-term exposure to the environment are less toxic or perhaps nontoxic (36).

Perez \textit{et al.} (37) synthesized gemini surfactants derived from arginine. These surfactants are double chain amphiphiles with two hydrophilic (chiral head groups from L-arginine and linear alkyl chain) head groups. They discussed the preparation and characterization of long chain (N-Lauroyl-L-nitro arginine)-\(\alpha,\omega\)-diaminoalkyl amide. These surfactants have antimicrobial activity and acute toxicity vs. Daphnia magna crustaceans and bioluminescent marine bacteria.

3 Surface Active Properties of Cationic Geminis

3.1 Kim \textit{et al.} investigated the surface active properties of some bis-quaternary ammonium compounds with two alkyl chain and two ammonio groups. These surfactants showed excellent surface active properties as anionic types. The properties are summarized in Table 1.

- These compounds show good water solubility and their Krafft points lies below 0°C, except those with a stearyl group.
- Bis-quaternary ammonium salts from epichlorohydrin, the cmc values of these compounds are smaller by about one to two order of magnitude than those of conventional quaternary ammonium salts. As recognized in anionic gemini surfactants, due to the presence of two alkyl chains, it is likely that bis-quaternary ammonium salts exhibit large intermolecular hydrophobic interaction that make it easier for them to form aggregates in water than the mono quaternary ammonium salts (38).
- Compounds with decyl and dodecyl chains show maximum ability to lower surface tension. Their \(\gamma_{\text{CMC}}\) values increased slightly with increased alkyl chain length in their homologous series.
- The pC\textsubscript{20} of bis-quaternary ammonium salts is higher by about one order of magnitude than mono quaternary ammonium salts with same alkyl chain length. The pC\textsubscript{20} value is a useful parameter to measure the efficiency of adsorption of surfactant on an air-water interface (39) and results shown in Table 1 which indicates that the bis-quaternary ammonium salts adsorbs more efficiently at the interface than the mono-quaternary ammonium salt.
- The foam ability and foam stability of bis-quaternary ammonium salts from epichlorohydrin are interesting. The foam ability of the compounds with decyl groups is low at 0.1 wt. % which is below the CMC. The foam ability of conventional dodecyltrimethylammonium chloride is almost zero (Table 1) whereas that of bis-quaternary ammonium salts with dodecyl chains is extremely high, and even higher than that of sodium dodecyl sulfate. The foam stability is also high. The maximum foam ability and foam stability were observed at the lipophilic size of dodecyl and tetra decyl chain and decreased of above these alkyl chain length.
- The surface properties, including foaming properties of bis-quaternary ammonium salts from 1, 3 dichloro propane, are almost same as those from epichlorohydrin route. It may be concluded that the hydroxyl group has a large effect on melting point of crystalline state but little effect on \(\gamma_{\text{CMC}}, \text{ CMC, pC}_{20}\), and foaming properties.

3.2 Conventional alkyltrimethylammonium cationic surfactants show very little foam at 0.1% concentration. In contrast C\textsubscript{12} and C\textsubscript{14} cationic geminis of structure [RNω (CH\textsubscript{3})\textsubscript{3}Y, 2Cl-] show very high foam where the spacer is short (3 carbon atom)

3.3 Solubilization: Solubilization is an important phenomenon required in tertiary oil recovery and detergency. Engberts \textit{et al.} (42) have shown that cationic geminis are better solubilizers than conventional surfactants. This is because of the tubular shape of the aggregates.

The propensity of the gemini micelles for oil solubi-
D. Shukla and V.K. Tyagi

Emulsifying Properties

Geminis are superior to conventional surfactants in solubilizing styrene in water. In the production of spherical latex particles, the polymerization of styrene, gemini diquats \(\text{C}_{12}H_{25}N^+(\text{CH}_3)_{2} \text{CH}_3 \text{N}^+(\text{CH}_3)_{2} \text{C}_{12}H_{25}\) give rise to more extensive microemulsion region than conventional quats.

Polymerization of styrene into spherical and fairly mono disperse “latex” particles (10-100 nm indiameter depending upon conditions) can be carried out in oil-in-water microemulsions. Before delving into how geminis can play role in the process, it is worthwhile to define “microemulsions”. Oil-in-water microemulsions are thermodynamically stable, optically transparent mixtures of hydrocarbon and water in which tiny hydrocarbon droplets are dispersed in water with the aid of a surfactant and a co-surfactant such as n-butanol or n-hexanol. Few surfactants will form “ternary globular microemulsions” in styrene without assistance of any co-surfactant. Among these are n-alkyltrimethylammonium halides. By polymerizing styrene as “oil droplets” stabilized only by a cationic surfactants (gemini or conventional). One can avoid the complications of fourth component, further simplicity can be gained by \(\gamma\)-ray irradiation, rather than a chemical initiator, to effect polymerization.

Cationic gemini surfactants of the alkanediyl-\(\alpha,\omega\) bis (dimethyl alkylammonium bromide) type are introduced into microemulsion polymerization which allows

<table>
<thead>
<tr>
<th>Compound (shown in scheme 1 and 2)</th>
<th>R</th>
<th>Krafft point (°C)</th>
<th>CMC (M)</th>
<th>(\gamma_{\text{CMC}})</th>
<th>pC(_{20})</th>
<th>Foam (mL)(\text{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 min.</td>
</tr>
<tr>
<td>1a (\text{C}{10}H{21}) <0</td>
<td>C({10}H{21})</td>
<td>(<0) 3.2 (\times) 10(^{-3})</td>
<td>36.5</td>
<td>2.9</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>1b (\text{C}{12}H{25}) <0</td>
<td>C({12}H{25})</td>
<td>(<0) 7.8 (\times) 10(^{-4})</td>
<td>37.0</td>
<td>3.2</td>
<td>280</td>
<td>270</td>
</tr>
<tr>
<td>1c (\text{C}{14}H{29}) <0</td>
<td>C({14}H{29})</td>
<td>(<0) 1.4 (\times) 10(^{-4})</td>
<td>39.0</td>
<td>4.4</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>1d (\text{C}{16}H{33}) <0</td>
<td>C({16}H{33})</td>
<td>(<0) 1.9 (\times) 10(^{-4})</td>
<td>42.2</td>
<td>5.3</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>1e (\text{C}{18}H{37}) <0</td>
<td>C({18}H{37})</td>
<td>(<0) 1.9 (\times) 10(^{-5})</td>
<td>42.2</td>
<td>5.3</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>2b (\text{C}{12}H{25}) <0</td>
<td>C({12}H{25})</td>
<td>(<0) 9.8 (\times) 10(^{-4})</td>
<td>39.2</td>
<td>3.3</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>2c (\text{C}{14}H{29}) <0</td>
<td>C({14}H{29})</td>
<td>(<0) 1.1 (\times) 10(^{-4})</td>
<td>41.8</td>
<td>4.5</td>
<td>270</td>
<td>260</td>
</tr>
<tr>
<td>2d (\text{C}{16}H{33}) <0</td>
<td>C({16}H{33})</td>
<td>(<0) 1.5 (\times) 10(^{-4})</td>
<td>42.0</td>
<td>5.4</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>2e (\text{C}{18}H{37}) <0</td>
<td>C({18}H{37})</td>
<td>(<0) 1.5 (\times) 10(^{-5})</td>
<td>42.0</td>
<td>5.4</td>
<td>60</td>
<td>10</td>
</tr>
</tbody>
</table>

\(\text{a}\) \(\gamma_{\text{CMC}}\), Surface tension at critical micelle concentration; pC\(_{20}\), adsorption efficiency.

\(\text{b}\) Evaluated by semi-micro TK method with a 0.1 wt% solution.

\(\text{c}\) At 1 wt% aqueous solution, above CMC of compound 1a.

\(\text{d}\) Not evaluated. reported.

\(\text{e}\) Reported values in reference 38 (at 20°C).

\(\text{f}\) Not reported.

\(\text{g}\) Reported values in reference 40 (at 25°C).

\(\text{h}\) Reported values in reference 41 (at 30°C).
the fine tuning of the phase behavior and leads to nanolatex particles with controlled properties (44).

Geminis were found to be superior to conventional single-tailed surfactants in solubilizing styrene in water. Among the 12-n-12 geminis (n = 2, 4, 6, 8, 10, 12), all formed single-phase oil-in-water microemulsions with styrene. Latex particle size showed a modest dependence upon spacer length maximum at n = 10 (45).

3.5 Skin and Eye Irritation

Dicationic geminis of structure \[\text{[C}_{12}\text{H}_{25}\text{N}^+(\text{CH}_3)_2\text{CH}_2\text{CONH}]_2\text{Y} \], where Y is -(CH2)4-or -(CH2)2 SS (CH2)2-were found to be nonirritating (Draize test) at concentration < 0.5% (46). These also confirmed antimicrobial resistance to wool fabric.

3.6 Antimicrobial Properties

Antimicrobial properties of geminis are important over the other conventional agents. But the effectiveness of these compounds depends upon the length and type of spacer and the hydrophobic counterpart.

- Quaternary ammonium salts are generally known as disinfectants. The common examples are trimethyl ammonium bromide (HTAB), benzyldodecyl dimethyl ammonium bromide (BDDAB), 2-ethoxy-carbonyl pentadecyl trimethyl ammonium bromide (EPTAB), etc. as shown in Structure 2, may display similar biosensitivity. Effect of the length of spacer and hydrophobic tail are shown in Table 2. Table 2 lists the MIC values for the Gemini series. Minimum Inhibitory Concentration (MIC) defined as the lowest concentration of antibacterial agent inhibiting visible growth after 24 h incubation at 37°C. Minimum inhibitory concentrations (MICs) were determined for this set of geminis against E. coli. It was found to be 6 µM, when m = 12 and n = 2. The MICs for BDDAB and EPTAB were found to be 625 and 78 µM respectively.

- Diz et al. (45) prepared diquaternary ammonium geminis from N-dodecyl betaine which have been found to be more effective against 19 Gram-positive and Gram-negative microorganism other than HTAB. Diquaternary ammonium geminis of structure \[\text{[C}_{12}\text{H}_{25}\text{N}^+(\text{CH}_3)_2\text{CH}_2\text{CONH}]_2\text{Y} \]. 2Cl, where Y = -(CH2)4 or -(CH2)2 SS (CH2)2- were shown to have greater antimicrobial activity against both gram-positive and gram-negative organism than hexadecyl trimethyl ammonium bromide. There was no significance in the antimicrobial activity of the two compounds with different linkages.

- Bis-quaternary ammonium compounds with two alkyl chains and two ammonio groups show good antimicrobial activity (17).

- Bis (alkyl ammonium) dichlorides having butylenes spacer show antimicrobial activity.

- Perez et al. (35) have reported the synthesis and evaluation of a novel class of biocompatible gemini surfactants obtained with arginine based on chemical, biological and fundamental studies. These compounds have exhibited a broad range of antimicrobial property against 16 selected microorganism. The Gram-negative bacteria are resistant than the Gram-positive bacteria, which makes them in a way suitable in the biodegradability process. In contrast to the corresponding single-chain molecules, two alkyl chains in one molecule linked by a spacer chain enhance the adsorption and aggregation properties by strengthening the inter or intramolecular hydrophobic interactions.

3.7 Hair Conditioning

The diquaternary ammonium chlorides \[\text{[C}_{18}\text{H}_{37}\text{N}^+\text{(CH}_3)_2\text{CH}_2\text{CHOH}.2\text{Cl}^-} \] is

Table 2. MIC Values for Geminis Against E. coli.

<table>
<thead>
<tr>
<th>Geminin</th>
<th>m (chain length)</th>
<th>n (spacer length)</th>
<th>MIC/µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td>21000</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td></td>
<td>5700</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td>8100</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td></td>
<td>2800</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
<td>930</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td></td>
<td>5200</td>
</tr>
</tbody>
</table>

*General formation shown in Structure 2.
claimed to exhibit hair conditioning properties superior to those of stearalkonium chlorides. The Rubine dye test demonstrated its highest substantivity to hair (25).

4 Novel Hydrolyzable and Biodegradable Cationic Geminis

Double chain surfactants have a bright prospects in developing a new class of surfactants. Some double chain cationic surfactants have potential promise as new candidates for an environmentally friendly surfactants.

Dialkylammonium salts have been widely used in industrial and household products. Increasing usage, however, is causing environmental problems owing to poor biodegradability. Thus much attention has been paid to the development of novel surfactants (46). On the other hand, gemini surfactants have been studied because of their excellent surface active properties in comparison to corresponding single chain surfactants (47-53). As a candidate for environmentally acceptable cationic surfactants, Tatsumi et al. prepared a new type of hydrolyzable cationic gemini surfactants, bis (ester ammonium) salts containing oxycarbonyl groups in the lipophile which may be much easily hydrolyzed as shown in Structure 3.

Novel cationic gemini surfactants, 1,3-bis [acyl oxyalkyl dimethyl ammonio]-2 have hydrolyzable oxycarbonyl moieties in the lipophilic portions. These surfactants showed excellent surface active properties. Their surface properties were largely influenced by changing the position of oxycarbonyl group in lipophile moiety. These cationic gemini surfactants showed good biodegradability (54).

New cationic geminis surfactants bis (alkyl ammonium dichlorides) having butylenes or butylene spacer and an oxycarbonyl group in lipophilic part showed good biodegradability.

5 Applications

Cationic gemini surfactants have wide applications because of their excellent surface activity. These are as follows:
➢ New cationic gemini surfactants derived from amino acid sources (arginine) have potential applications in foaming, agrichemical spreading aids and cleaning processes.
➢ Bis-quaternary ammonium salts have found broad utility ranging from industrial to personal care applications (55-57).
➢ Bis-quaternary ammonium compounds with two alkyl chains and two ammonio groups show good extractive abilities as phase transfer catalyst (58).
➢ Water-soluble ester containing two quaternary ammonium groups are useful as bleach activator (59).
➢ Some cationic gemini surfactants are used as hair conditioners and fabric softeners.
➢ Cationic geminis with a hydroxylated spacer 1, 3-bis (dodecyl-N. N dimethyl ammonium)-2-propanol dichloride were used to separate all members of a family ergot alkaloids by micellar electro kinetic capillary chromatography (60).

6 Conclusion

This paper considered several aspects of cationic gemini surfactants. The interest of these surfactants lies in their low cmc and high efficacy in lowering the surface tension of water. Besides this, cationic geminis show interesting antimicrobial properties that may find useful applications.

References
Cationic Gemini Surfactants: A Review

38. Y-P. ZHU, K. ISHIHARA, A. MASUYAMA, Y. NAKATSUJI and M. OKAHARA, Preparation and Properties of Double-

